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Abstract-The problem of free convection over an isothermal vertical porous plate with transpiration is 
studied in this paper both numerically and experimentally. The effects of uniform transpiration on heat 
transfer and temperature and velocity profiles are predicted. Experimental data on non-dimensional 
temperature profiles for values of streamwise variable 

in the range -2 < 5 Z$ 2, obtained interferometrically, show close agreement with numerical predictions. 
An accuracy of + 1°F in temperature profile measurement is estimated for (7”- T,) = 50°F. 

NOMENCLATURE 

specific heat of fluid; 
gravitational acceleration; 

Grashof number 
s(L- &)X3 

v2Tm 

heat-transfer coefficient; 
enthalpy of the fluid; 

thermal conductivity of fluid; 
light path length; 
mass flux at the wall; 

Nusselt number y; 

Prandtl number = v/cc; 
heat flux (conductive) at the wall; 
fringe shift; 

temperature; 

velocity component in x-direction; 
velocity component in y-direction; 

transpiration velocity at the wall; 
streamwise co-ordinate (along the plate); 
cross-stream co-ordinate (normal to the 
plate). 

Greek letters 

6 thermal diffusivity; 

P? coefficient of volume expansion; 

0, 
t-t, 

nondimensional temperature ~. 
t,--t,’ 

1, wave length of monochromatic light; 

K absolute viscosity of fluid; 

V, kinematic viscosity of fluid; 

streamwise nondimensional variable; 

density of fluid; 
stream function. 

Subscripts 

0, w, wall condition; 

a, ambient fluid condition. 

INTRODUCTION 

THE EFFECTS of transpiration on free convection flow 
over a vertical porous plate has been the subject of 
several investigations. Eichhorn [l] found conditions 

on the transpiration rates and wall temperature under 
which self-similar solutions are possible for this case. 

Sparrow and Cess [2] presented approximate series 
solutions for the case of uniform transpiration and wall 
temperature. More recently, Merkin [3] gave numerical 

solutions to the boundary-layer equations for Prandtl 

number of 1.0 and discussed the asymptotic behavior 
for large transpiration rates. All these investigators 
presented analysis for a constant property fluid in which 
density variations are retained only in the body force 
term of the momentum equation. Clarke [4] analyzed 
the problem with density variations in full and 

presented solutions for the outer region of the flow 
field for blowing conditions under which self similar 
solutions to the boundary-layer equations obtain. On 
the experimental side, to our knowledge, there is only 
one investigation reported in the available literature 
on the subject. Brdlik and Mochalov [S] have studied 

the problem using interferometry for small values of 
blowing and suction. In the present investigation, 
numerical solutions to the boundary-layer equations 
for uniform transpiration and wall temperature case 
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have been obtained not only retaining density varia- CONDITIONS FOR SELF SIMILARITY 

tions in full, but also taking into account variations in Before discussing the numerical solution procedure 
the properties p. K and co. These numerical predictions it is worthwhile to consider the conditions under which 
are then compared with experimental data obtained self similar solutions exist. If density variations are 
interferometrically for values of nondimensional disregarded except in the body force term and the 
streamwise variable properties p, K. cp and I( are constants, then equations 

l/J (1) become: 

ilC ?r 
mass : -+--=(J 

intherange -2~4~2. ix (7). 

Tw H 
‘w 

-0 

FIG. 1. The coordinate system. 

where 

and the coefficient of volume expansion fl is replaced 

by l/T,. 
The boundary conditions are: 

BOUNDARY-LAYER EQUATIONS u=O. H=l, u=u&) at y=o, x>o 

Neglecting viscous dissipation in the energy equation II -+O, 0 -+ 0 as Y-+“- (4) 
but retaining variations in properties p, K, p and cp, 

the equations of the steady free convection boundary 
LI = 0, 0 = 0 at X = 0, Y > 0. 

layer on a vertical porous plate with coordinates as If the governing equations and the boundary conditions 
shown in Fig. 1 are: of this problem are examined for invariance under a 

group of affine transformations, possibility of the 

mass : 
Qu) I c’(P4 _ o 

L7.x (‘1 
existence of self similar solutions is revealed provided 

X-momentum: 

-,,“I 
0()-x 

(I) 
Introducing the similarity variable 

energy : 

equations of state: i = i(t); p = p(t, p); 
where 

T -Tm)x3 
p = /A(t); K = K(t). &. x &! w ~..~ 

v2 TX. 

Here, fx is the force of buoyancy per unit volume of a is the Grashof number and the stream function 
fluid element and is given as 

.L = dPm -PI. I// = 4” 7 
! i 

“4<(ri) (5) 

The boundary conditions are: leads to the following set of coupled ordinary 
u=O, i=i,, (pV) = k:(x) at y = 0, x>o differential equations and boundary conditions: 

u -+ 0. i+ i, as ?‘ + cc (2) <“‘-t 3<<“- 2(<‘)2 + 0 = 0 
and and 

u = 0, i=i, at x = 0, Y > 0. 0” + 3Pr[f1’ = 0. 

The problem solved numerically in this paper is the 
one posed by the set of equations (1) together with 

Boundary conditions: 

boundary conditions (2) for the case of i, = const i’(q) = 0, f1 = I, i(q) = -M/3 at q=o 

(i,, > i,) and ti’;I = const. (I -+ 0, c’(u) -+ 0 
(6) 

as v+zL. 
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Here the blowing parameter M is defined as: 

-I,4 
ug-x 

The similarity solutions for [ and H with M as a 
parameter are given by Eichhorn [l] and by Ostrach 

[6] for M = 0 (zero blowing case). 
If, however, u. is a constant, self-similar solution is 

not possible. In this case x and y are replaced by new 

independent variables n and [ defined as 

r? & y Grx 1’4; ( 1 ( > 
l/4 

X 4 
qc!& ) o. = const. (7) 

X 

The transformed problem, after introduction of the 

stream function as defined in equation (5) becomes: 

Boundary conditions: 

a[ 
-=o, O=l 
all 

and [=--t/4 at q=O 

and 

X 
--0, O=O as 
all 

r/-co. 

Finite difference solution to this problem using a 
slightly modified form of the stream function (to give a 

homogeneous boundary condition on [) is given by 
Merkin [3] for Pr = 1 and an approximate series 

solution was presented by Sparrow and Cess [2] for 
Pr = 0.12. 

THE SOLUTION PROCEDURE 

Returning now to the original problem with the 
governing equations (1) and boundary conditions (2) 

the numerical solution presented here accounts not 

only for variations of density, but also for other 
properties n, cr, and k as given by standard tables for 

properties of air such as Eckert and Drake tables. The 

numerical procedure used was a modified version of 
Patankar-Spalding [7] program which has been in use 
at Stanford for several years. 

The program uses a fully implicit finite difference 

procedure and solves the parabolic partial differential 

equations of the boundary-layer after introducing the 

von Mises transformation. 

The program requires specification of initial profiles 

of velocity and enthalpy. In our case, these profiles 
were specified very close to the leading edge (x = iin) 

using the values given by Ostrach’s solution for an 
impermeable wall. It was intended, from the outset of 

this investigation, to compare experimental results with 
the predictions, hence the wall condition chosen was the 

one least difficult to set experimentally: constant mass 
flux and constant temperature at the wall. Although the 
program is capable of taking into account variations 

of properties associated with large temperature 

difference (tW- t,), the calculations and the experiment 
were both conducted using only a 5OdegF difference 
to permit comparisons of these results with the 

available constant property solutions. The program 
prints out results in dimensional form such as tempera- 

ture in degF and velocity in ft/s as functions of x and y 
in feet. However, results are presented here in non- 
dimensional form using values of v and k based on the 

average temperature between the wall and the free- 
stream. The normal velocity at the wall was computed 

from the known mass flux by using the density at the 

wall. 

Discussion of numerical results 
The non-dimensional temperature and velocity pro- 

files predicted by the program for the zero blowing 

Numerical results 

FIG. 2(a). Non-dimensional temperature profile. 
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Numerical results 

Ostrach [6] 
o Gr, = 3.06 x 10s 
a Gr, = 4.09 x IO’ 

g(T,-T,)X3 
G/,4 “zT 

c=o m 

FIG. 2(b). Non-dimensional velocity profile 

Numerical results 

g C&-T,) X3 
Gr, P y2- 

T, 

FIG. 3. Effect of transpiration on Nusselt number. 

case (< = 0) are compared in Figs. 2(a). (b) with 

Ostrach’s [6] solutions. Numerical results for two 
Grashof numbers are shown and agreement is seen to 
be excellent. The slight departures in the velocity 
profile are assumed to result from the use of variable 
properties in our solutions. 

The effect of transpiration on heat-transfer rate from 
the wall is shown in Fig. 3. At a given Grashof number, 
blowing decreases while suction increases the heat 
transfer rate. All constant 5 lines have the same slope 
on a log-log plot of Nu, vs Gr, which may be 

explained as follows : We have 

Defining a heat-transfer coefficient h, 

4; = IlJT,-T,). 

Therefore the Nusselt number 



Free convection over a vertical porous plate 1469 

FIG. 4. Effects of transpiration on Nusselt number at a fixed Grashof 
number. 

Let blowing side, Nu, -+ 0 as 5 -+ co showing that con- 

d0 

-) 
= f(5). 

ductive heat transfer at the wall drops to zero as 

au II=0 
blowing is increased indefinitely. On the suction side, 

Then the curve approaches an asymptote. This asymptotic 

Nu = _ Gr, 1’4 X 
( > 

suction behavior will be discussed next. 

4 
f (5). (9) For large suction rates, temperature and velocity 

become independent of x [3]. Dropping derivatives 
This shows that on a log-log plot of Nu, vs Gr,, all with respect toxin the continuity and energy equations 

constant 5 lines have the same l/4 slope. and solving for 8, we arrive at the asymptotic suction 
Next, let iVu$ denote zero blowing condition. Then profile for temperature, given by the exponential 

from (9), function 

Nux f (5) _=- 
Nu,* f(O)’ 

(10) 0 = exp t)’ = exp[Pr{g]. 
[ 1 (11) 

The change in the Nusselt number at a given Grashof Therefore 
number due to transpiration as given by equation (10) dt? 
is shown in Fig. 4 and tabulated in Table 1. On the 

-1 % I!=0 
= Pr5 = f(5) 

Table I 

Nux f(5) Pr -=_=_ 
Nu,* f(O) f(O)" 

(12) 

5 NU,lNU,* Thus, in the asymptotic suction limit, a plot of Nu,/Nu,* 

vs 5 approaches an asymptote with a slope h/f(O). 
-2.4 3.245 
-2.0 2.820 

Using Pr = 0.7 and f (0) = -0.5048 from our nu- 

- 1.6 2.395 
merical solution, we get a slope of - 1.39 which agrees 

- 1.2 1.990 with the slope of the asymptote in Fig. 4 within 2 per 

- 1.0 1.805 
-0.8 1.625 
-0.4 1.300 
0.0 1aOO 
0.4 0,755 
0.8 0.550 
1.0 0.465 
1.2 0.380 
1.6 0.260 
2.0 0,160 
2.4 0.085 

cent. 
In the asymptotic suction limit, equation (11) shows 

that 

Thus, all the heat transferred from the wall goes into 
heating the sucked air from free-stream to wall tempera- 
ture and none is convected downstream in the 
boundary layer. 



I I I I 
Fig. 7 for one tixcd value 01 < and three ditTcrenL (,I., 
and /ii;;. .A11 points fall on the same curve. probiding a 

check on the accuracy of computed results. The non- 
dimensional temperatures arc tabulated as functions of 

Numerical results q and Q in Table 2. 

EXPEKIMENTAL SET-L P 

r) p ; @)I4 

FIG. 5. Non-dimensional velocity profiles. 

The objective of the experimental part of this in- 
vestigation was to obtain nondimensional temperature 

profiles for several values of < and Grashof numbers. 

The porous plate test section used here was designed 
for interferometric studies of transpired boundary 
layers. It consists of four 6 x 4 in sintered bronze porous 

_ plates of &in thickness, supported on an aluminum 

casting by means of thin phenolic strips glued to their 
sides. The test surface is l6-in long and 6-in wide 

providing an optical path length of 6in. The plates 
were heated by resistance wires glued into grooves on 

the underside of the plates. Power was supplied to 

each segment individually. The plate temperatures were 

cng (&P 
Gr, a gmv-r, )X3 

v2 Tim-\ 

Numerical results 

Experimemtal results 
o Gr, -0.65 ~10’ 

\ 
nGr, =I~OxlO’ 

q Gr, =048x106 

FIG. 6. Non-dimensional temperature profiles. 

The predicted nondimensional velocity profiles are 

shown in Fig. 5. The effect of blowing is to increase 
the maximum velocity and shift its location farther 

away from the wall. 
The predicted nondimensional temperature profiles 

are shown as solid lines in Fig. 6. As <, or blowing rate. 
increases, the temperature profiles become fuller and 
boundary-layer thickness increases. The exponential 
suction profile given by equation (11) is compared with 
computed results for 5 = -2.5 and the two curves are 
almost identical. 

Finally, calculated values of 0 are plotted vs ~7 in 

measured by a set of five iron---constantan thermo- 
couples. one at the center and four near the edges in 
each plate. Uniformity of temperatures measured by 
these thermocouples was better than + I degF for 
([,-r,) = 50degF. The uniformity of porosity was 
better than &5 per cent for each plate. The overall 
design features of the test section used here were similar 
to those of the test section used by Moffat [8] and its 
success in transpired boundary-layer studies has been 
well established over a period of several years. 

Each of the porous plate segments was supplied 
individually with transpiration air through a flow 
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Numerical results 

0.8 o Gr, = 9.79X10: Vo=00221 

6 c;” A GG = 1.22~107. v,=OOl47 

I! hh 
0.6 

al Gr, = 1.85~10~. v=O.O184 ft/s 
a 

0.4 

FIG. 7. Similarity of non-dimensional temperature profiles. 

Table 2. Non-dimensional temperatures 
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9 

0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 

5 = -2.0 

1GOo 
0.764 
0.578 
0.441 
0.325 
0.240 
0.175 
0.125 
0.088 
0.065 
0.048 
0.034 
0.025 

-1.0 -0.5 

1000 1 .ooo 
0,840 0.871 
0.695 0.747 
0.570 0,630 
0.455 0.523 
0.360 0432 
0.278 0,348 
0.215 0277 
0.160 0.217 
0.121 0.168 
0.090 0.128 
0.066 0.093 
0.048 0068 
0.033 0047 
0.024 0.032 

0,022 

&l, 5) 
_____. 

0.0 0.5 1.0 1.5 2.0 

1.000 1000 1000 1x00 1.000 
0.902 0.932 0.951 0.967 0.981 
0.805 0.855 0.895 0930 0.957 
0.711 0.776 0.835 0.885 0.929 
0.618 0.695 0.766 0.832 0.890 
0.526 0.614 0.695 0.775 0.845 
0.444 0.535 0.620 0.708 0.792 
0.370 0.46 1 0.545 0,637 0.734 
0.305 0.386 0.468 0,564 0,669 
0.245 0.317 0.393 D490 0.597 
0.196 0.260 0.329 0.418 0,525 
0.156 0,213 0.271 0.352 0.454 
0,125 0.173 0.224 0.293 0.386 
0.098 0.138 0.180 0.241 0.324 
0.075 0.108 0,142 0.195 0.267 
0.055 0.084 0.112 0.158 0,220 
0.043 0.064 0.089 0.130 0.180 
0,032 0,050 0.070 0.103 0.144 
0.025 o@Io 0.055 0.079 0.115 
0.020 0.030 0.045 0.064 0.092 
0.015 0.020 0.033 0.055 0.075 

metering system. The blowing air was supplied from 

laboratory compressed air line, after two pressure 
regulators and a filter, and suction was provided by 
connecting the flow metering system to the inlet of a 

small centrifugal blower. The flow metering capability 
needed for this work was in the low range of 0.05- 
0.5 scfm and a specially designed system of flowmeters 
was used. Each of the flowmeters consisted of two 
porous disks inserted into a 6-in long l-in dia. plastic 
pipe with pressure taps to measure the pressure drop 
across these disks. Each flowmeter was calibrated 
individually using a laminar flow metering element to 
determine its pressure drop vs flow rate characteristic 
and repeatability was found to be within 2 per cent. 

HMT Vol. 17. No. 12-D 

The power supplied to each plate segment was con- 

trolled by a variac connected to line through a voltage 
stabilizer and measured by a wattmeter. No attempt 
was made to measure the local heat-transfer rate 
directly by accounting for energy loss from the plates. 
Heat transfer from a plate, (for 5 = 0) as computed 
from the measured temperature gradient at the wall, 
accounted for only 60-80 per cent of the total power 
supplied to the plate, hence any direct measurement 
would have been quite uncertain. 

The temperature profiles were determined by a 
Mach-Zehnder interferometer designed and con- 
structed at Stanford. The mirrors and beam splitters 
were 2in in diameter and were supported in gimbaled 
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mounts with micrometer controls. A mercury light 
source was used with a filter to give a monochromatic 
light beam at 5461 A. 

The porous plate test section was suspended 

vertically from an adjustable steel post with leading 
edge of the plate at a height of 334ft from the floor. 

The entire test section assembly was enclosed in a 

relatively large open ended cardboard box whose 
inside surface was lined with aluminized mylar. The 
inside surface of the box was kept at least 6in away 

from the plate surface to ensure that there was neglible 
effect of confinement on the free convection boundary 

layer developing along the plate. The bottomless 

cardboard enclosure did not extend all the way down 
to the floor but left enough open area at the bottom 

for freely entraining surrounding air. The air condi- 
tioning and exhaust vents in the room were sealed off 
to avoid circulation in the room. Balsa wood fences 

with optical quality windows were installed on both 

sides of the plates to prevent lateral spreading of the 
boundary layer at the edges of the plate. With these 

precautions, exceptional steadiness of the free con- 
vection boundary layer was achieved even at Grashof 
numbers of 10’ and i = 2.0. 

TEST PROCEDURE AND DATA REDUCTION 

Three series of interferograms were obtained corre- 

sponding to three Grashof numbers and several values 

oft at each Grashof number (Fig. 8). The pictures with 
4:l magnification were taken with Polaroid type 57 
film using three 20 ms exposures at intervals of about 
5s. The finite fringe field interferograms were taken 
with initial fringe orientation perpendicular to the 

unheated plate. The interferograms were evaluated 
under a traversing microscope with a magnification of 

ten by the method described in [9]. An accuracy of 
f0.05 fringe shift is expected in this procedure. 

Careful alignment of the test plate surface with the 
light beam was necessary to avoid errors in measure- 
ment. This alignment was done by installing a 

micrometer control for the orientation of the plate and 
using the method of reflection interference described in 
[lo]. The fringe focusing plane was located at the 

centerline of the test section to minimize refraction 

errors [lo]. 
The density at a point in the boundary layer was 

evaluated by the Dale-Gladstone relationship 

where K, the DaleeGladstone constant for air was 
taken as 0.226 cm3/g. The temperature at the point was 

then calculated using perfect gas law. The wall tempera- 

ture predicted by fringe shift measurements agreed 
with the thermocouple measured averaged temperature 

within + 1 degF. 

FIG. 8. Interferograms at x = loin for different transpiration rates 
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EXPERIMENTAL RESULTS REFERENCES 

The experimental data are compared with numerical 

predictions in Fig. 6. Property values based on average 

temperature between the wall and the freestream were 

used to express experimental results in nondimensional 
form. The agreement of the experimental data with the 
predictions of the Patankar-Spalding program is seen 

to be excellent. Although direct measurements of local 
heat-transfer rates at the wall were not made in this 
investigation, the numerical predictions in Figs. 3 and 4 

may be relied upon, as the close agreement between 
theory and experiment in Fig. 6 testifies. 

5. 

6. 

CONCLUSIONS 

Numerical solutions to the variable property tran- 
spired free convection boundary-layer equations have 

been obtained using finite difference procedure of 

Patankar and Spalding. Interferometrically measured 
non-dimensional temperature profiles for the uniform 

wall temperature and transpiration rate case agreed 

closely with these numerical predictions. 
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CONVECTION NATURELLE SUR UNE PLAQUE 
POREUSE VERTICALE AVEC TRANSPIRATION 

R&urn&On btudie numtriquement et expCrimentalement le problirme de la convection naturelle sur 
une plaque poreuse, verticale et isotherme, avec transpiration. On d&gage I’effet de la transpiration 
uniforme sur le transfert thermique et sur la tempdrature. Un bon accord est observt entre le calcul 
et les mesures interfkromktriques des profils de tempkrature adimensionnelle pour des valeurs 

l&&Y $ 

( > 

114 

x 

comprises dans le domaine -2 < 5 < 2. La prtcision de la mesure du profil de temperature est estimee B 
+0,55”C pour (T,- T=) = 28°C. 

FREIE KONVEKTION UND VERDUNSTUNG AN EINER 
SENKRECHTEN POROSEN PLATTE 

Zusammenfassung-Das Problem der freien Konvektion an einer isothermen, senkrechten porBsen Platte 
mit Verdunstung wird numerisch und experimentell untersucht. Die Einfliisse der gleichmtinigen 
Verdunstung auf die Wirmeiibertragung und die Temperatur- sowie Geschwindigkeitsprofile werden 
bestimmt. Experimentelle, interferometrisch gewonnene Daten von dimensionslosen Temperaturprofilen 
fiir Werte der Variablen 

114 

im Bereich -2<5<2 

zeigen eine gute iibereinstimmung mit den numerisch erhaltenen Werten. Bei der Bestimmung der 
Temperaturprofile fiir (T,- T,) = 50°F wird eine Unsicherheit von + 1°F veranschlagt. 
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CBOBOAHAR KOHBEKUMR OKOJIO BEPTMKAJlbHOti I-IOPkfCTOti NIACTMHbI 
IIPM I’IOPMCTOM MCIIAPEHMM 

AmoTaum-B ItaHHOti pa6oTe WCIICHHO H 3KCIIePHMeHTaJlbHO H3yWeTCR ceo6omiaa KOHB'ZKUUR 

OKOJIO H3OTepMWleCKOfi BepTHKanbHOii IlOpACTOii IUIaCTHHbI IIpH IIOpHCTOM HCIIapeHWf. PaCCYHTbI- 

BaloTCnrIpo@UIH TeMIIepaTypbI H CKOPOCTA, a TaKme BJIHRHH~O~HOPOLWO~O IIOpACTOrO ucnapewa 

Ha IIepeHOC TeIIJIa. nOJIy'F?HHble HHT&JC~OMeTpHWCK~ 3KCnepHMeHTanbHble DaHHble II0 6ex- 

pa3MepHbIM TeMllepaTypHbIM IlpO@iJIXM LUIR 3Ha'ieHHti IIepeMeHHOii [4 y $ 
i 1 

114 
BnOnb IlO 

IIOTOKy B mana30He - 2<Lf92 xopollro cornacy5oTcn C pe3ynbTaTaMH pX'Gi+TOB. ript4 n3MepeHne 

IIpOtjlWl TeMllepaTypblLWJT(~,- T,)- 50” F LlOny'IeHa TO'iHOCTb B fl" F. 


